Deep non-probabilistic parsing of large corpora
نویسندگان
چکیده
This paper reports a large-scale non-probabilistic parsing experiment with a deep LFG parser. We briefly introduce the parser we used, named SXLFG, and the resources that were used together with it. Then we report quantitative results about the parsing of a multi-million word journalistic corpus. We show that we can parse more than 6 million words in less than 12 hours, only 6.7% of all sentences reaching the 1s timeout. This shows that deep large-coverage non-probabilistic parsers can be efficient enough to parse very large corpora in a reasonable amount of time.
منابع مشابه
Efficacy of Beam Thresholding, Unification Filtering and Hybrid Parsing in Probabilistic HPSG Parsing
We investigated the performance efficacy of beam search parsing and deep parsing techniques in probabilistic HPSG parsing using the Penn treebank. We first tested the beam thresholding and iterative parsing developed for PCFG parsing with an HPSG. Next, we tested three techniques originally developed for deep parsing: quick check, large constituent inhibition, and hybrid parsing with a CFG chun...
متن کاملSemantic Parsing of Mathematics by Context-based Learning from Aligned Corpora and Theorem Proving
We study methods for automated parsing of informal mathematical expressions into formal ones, a main prerequisite for deep computer understanding of informal mathematical texts. We propose a context-based parsing approach that combines efficient statistical learning of deep parse trees with their semantic pruning by type checking and large-theory automated theorem proving. We show that the meth...
متن کاملLearning To Parse on Aligned Corpora
One of the first big hurdles that mathematicians encounter when considering writing formal proofs is the necessity to get acquainted with the formal terminology and the parsing mechanisms used in the large ITP libraries. This includes the large number of formal symbols, the grammar of the formal languages and the advanced mechanisms instrumenting the proof assistants to correctly understand the...
متن کاملتأثیر ساختواژهها در تجزیه وابستگی زبان فارسی
Data-driven systems can be adapted to different languages and domains easily. Using this trend in dependency parsing was lead to introduce data-driven approaches. Existence of appreciate corpora that contain sentences and theirs associated dependency trees are the only pre-requirement in data-driven approaches. Despite obtaining high accurate results for dependency parsing task in English langu...
متن کاملParsing with the Shortest Derivation
Common wisdom has it that the bias of stochastic grammars in favor of shorter derivations of a sentence is harmful and should be redressed. We show that the common wisdom is wrong for stochastic grammars that use elementary trees instead of context-free rules, such as Stochastic Tree-Substitution Grammars used by Data-Oriented Parsing models. For such grammars a non-probabilistic metric based o...
متن کامل